Ros / Riad

Feature and Dimensionality Reduction for Clustering with Deep Learning

lieferbar ca. 10 Tage als Sonderdruck ohne Rückgaberecht

128,39 €

Preisangaben inkl. MwSt. Abhängig von der Lieferadresse kann die MwSt. an der Kasse variieren. Weitere Informationen

auch verfügbar als eBook (PDF) für 117,69 €

Fachbuch

Buch. Hardcover

2024

xi, 268 S. 1 s/w-Abbildung, Bibliographien.

In englischer Sprache

Springer. ISBN 978-3-031-48742-2

Format (B x L): 15,5 x 23,5 cm

Gewicht: 588 g

Das Werk ist Teil der Reihe: Unsupervised and Semi-Supervised Learning

Produktbeschreibung

This book presents an overview of recent methods of feature selection and dimensionality reduction that are based on Deep Neural Networks (DNNs) for a clustering perspective, with particular attention to the knowledge discovery question. The authors first present a synthesis of the major recent influencing techniques and "tricks" participating in recent advances in deep clustering, as well as a recall of the main deep learning architectures. Secondly, the book highlights the most popular works by “family” to provide a more suitable starting point from which to develop a full understanding of the domain. Overall, the book proposes a comprehensive up-to-date review of deep feature selection and deep clustering methods with particular attention to the knowledge discovery question and under a multi-criteria analysis. The book can be very helpful for young researchers, non-experts, and R&D AI engineers. - Presents a synthesis of recent influencing techniques and "tricks" participating in advances in deep clustering; - Highlights works by “family” to provide a more suitable starting point to develop a full understanding of the domain; - Includes recent methods of feature selection and dimensionality reduction that are based on Deep Neural Networks.

Topseller & Empfehlungen für Sie

Ihre zuletzt angesehenen Produkte

Autorinnen/Autoren

  • Rezensionen

    Dieses Set enthält folgende Produkte:
      Auch in folgendem Set erhältlich:

      • nach oben

        Ihre Daten werden geladen ...