Natarajan

Perfect Powers—An Ode to Erdos

Springer

ISBN 9789819625987

Standardpreis


ca. 139,09 €

lieferbar ca. 10 Tage als Sonderdruck ohne Rückgaberecht

Preisangaben inkl. MwSt. Abhängig von der Lieferadresse kann die MwSt. an der Kasse variieren. Weitere Informationen

auch verfügbar als eBook (PDF) für 128,39 €

Bibliografische Daten

Fachbuch

Buch. Hardcover

2025

1 s/w-Abbildung.

In englischer Sprache

Umfang: xiv, 184 S.

Format (B x L): 15,5 x 23,5 cm

Verlag: Springer

ISBN: 9789819625987

Produktbeschreibung

The book explores and investigates a long-standing mathematical question whether a product of two or more positive integers in an arithmetic progression can be a square or a higher power. It investigates, more broadly, if a product of two or more positive integers in an arithmetic progression can be a square or a higher power. This seemingly simple question encompasses a wealth of mathematical theory that has intrigued mathematicians for centuries. Notably, Fermat stated that four squares cannot be in arithmetic progression. Euler expanded on this by proving that the product of four terms in an arithmetic progression cannot be a square. In 1724, Goldbach demonstrated that the product of three consecutive positive integers is never square, and Oblath extended this result in 1933 to five consecutive positive integers. The book addresses a conjecture of Erdos involving the corresponding exponential Diophantine equation and discusses various number theory methods used to approach a partial solution to this conjecture. This book discusses diverse ideas and techniques developed to tackle this intriguing problem. It begins with a discussion of a 1939 result by Erdos and Rigge, who independently proved that the product of two or more consecutive positive integers is never a square. Despite extensive efforts by numerous mathematicians and the application of advanced techniques, Erdos' conjecture remains unsolved. This book compiles many methods and results, providing readers with a comprehensive resource to inspire future research and potential solutions. Beyond presenting proofs of significant theorems, the book illustrates the methodologies and their limitations, offering a deep understanding of the complexities involved in this mathematical challenge.

Autorinnen und Autoren

Kundeninformationen

Explores and resolves a longstanding unsolved mathematical conjecture of Erdös, Rigge, Fermat, Euler, and Goldbach Investigates if a product of two or more positive integers in an arithmetic progression can be square or higher power Addresses a conjecture involving a specific Diophantine equation and discusses various number theory methods

Produktsicherheit

Hersteller

Springer Nature Customer Service Center GmbH

ProductSafety@springernature.com

Topseller & Empfehlungen für Sie

Ihre zuletzt angesehenen Produkte

Rezensionen

Dieses Set enthält folgende Produkte:
    Auch in folgendem Set erhältlich:

    • nach oben

      Ihre Daten werden geladen ...