Mishra / Kumar

Architecting a Modern Data Warehouse for Large Enterprises

Build Multi-cloud Modern Distributed Data Warehouses with Azure and AWS

Apress

ISBN 9798868800283

Standardpreis


ca. 58,84 €

lieferbar ca. 10 Tage als Sonderdruck ohne Rückgaberecht

Preisangaben inkl. MwSt. Abhängig von der Lieferadresse kann die MwSt. an der Kasse variieren. Weitere Informationen

auch verfügbar als eBook (PDF) für 56,99 €

Bibliografische Daten

Fachbuch

Buch. Softcover

2023

146 s/w-Abbildungen, Bibliographien.

In englischer Sprache

Umfang: xv, 368 S.

Format (B x L): 17,8 x 25,4 cm

Gewicht: 728

Verlag: Apress

ISBN: 9798868800283

Produktbeschreibung

Design and architect new generation cloud-based data warehouses using Azure and AWS. This book provides an in-depth understanding of how to build modern cloud-native data warehouses, as well as their history and evolution. The book starts by covering foundational data warehouse concepts, and introduces modern features such as distributed processing, big data storage, data streaming, and processing data on the cloud. You will gain an understanding of the synergy, relevance, and usage data warehousing standard practices in the modern world of distributed data processing. The authors walk you through the essential concepts of Data Mesh, Data Lake, Lakehouse, and Delta Lake. And they demonstrate the services and offerings available on Azure and AWS that deal with data orchestration, data democratization, data governance, data security, and business intelligence. After completing this book, you will be ready to design and architect enterprise-grade, cloud-based modern data warehouses using industry best practices and guidelines. You will: - Understand the core concepts underlying modern data warehouses - Design and build cloud-native data warehouses - Gain a practical approach to architecting and building data warehouses on Azure and AWS - Implement modern data warehousing components such as Data Mesh, Data Lake, Delta Lake, and Lakehouse - Process data through pandas and evaluate your model’s performance using metrics such as F1-score, precision, and recall - Apply deep learning to supervised, semi-supervised, and unsupervised anomaly detection tasks for tabular datasets and time series applications

Autorinnen und Autoren

Kundeninformationen

Covers services and utilities available on Azure and AWS to build modern data warehouses Provides enterprise-grade best practices to design and architect cloud-based modern data warehouses Material is aimed at both data developers and data architects

Produktsicherheit

Hersteller

Springer Nature Customer Service Center GmbH

ProductSafety@springernature.com

Topseller & Empfehlungen für Sie

Ihre zuletzt angesehenen Produkte

Rezensionen

Dieses Set enthält folgende Produkte:
    Auch in folgendem Set erhältlich:

    • nach oben

      Ihre Daten werden geladen ...