Estimation and Testing Under Sparsity
École d'Été de Probabilités de Saint-Flour XLV - 2015
Springer Nature Switzerland
ISBN 978-3-319-32774-7
Standardpreis
Bibliografische Daten
eBook. PDF
2016
XIII, 274 p..
In englischer Sprache
Umfang: 274 S.
Verlag: Springer Nature Switzerland
ISBN: 978-3-319-32774-7
Weiterführende bibliografische Daten
Das Werk ist Teil der Reihe: École d'Été de Probabilités de Saint-Flour Lecture Notes in Mathematics
Produktbeschreibung
Taking the Lasso method as its starting point, this book describes the main ingredients needed to study general loss functions and sparsity-inducing regularizers. It also provides a semi-parametric approach to establishing confidence intervals and tests. Sparsity-inducing methods have proven to be very useful in the analysis of high-dimensional data. Examples include the Lasso and group Lasso methods, and the least squares method with other norm-penalties, such as the nuclear norm. The illustrations provided include generalized linear models, density estimation, matrix completion and sparse principal components. Each chapter ends with a problem section. The book can be used as a textbook for a graduate or PhD course.
Autorinnen und Autoren
Produktsicherheit
Hersteller
Springer-Verlag GmbH
Tiergartenstr. 17
69121 Heidelberg, DE
ProductSafety@springernature.com